(7x^2-4)+(x^2+3)+(3x2+5)+(5x^2-2)=67

Simple and best practice solution for (7x^2-4)+(x^2+3)+(3x2+5)+(5x^2-2)=67 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x^2-4)+(x^2+3)+(3x2+5)+(5x^2-2)=67 equation:



(7x^2-4)+(x^2+3)+(3x^2+5)+(5x^2-2)=67
We move all terms to the left:
(7x^2-4)+(x^2+3)+(3x^2+5)+(5x^2-2)-(67)=0
We get rid of parentheses
7x^2+x^2+3x^2+5x^2-4+3+5-2-67=0
We add all the numbers together, and all the variables
16x^2-65=0
a = 16; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·16·(-65)
Δ = 4160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4160}=\sqrt{64*65}=\sqrt{64}*\sqrt{65}=8\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{65}}{2*16}=\frac{0-8\sqrt{65}}{32} =-\frac{8\sqrt{65}}{32} =-\frac{\sqrt{65}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{65}}{2*16}=\frac{0+8\sqrt{65}}{32} =\frac{8\sqrt{65}}{32} =\frac{\sqrt{65}}{4} $

See similar equations:

| 3(x-1)+6(x-2)=30 | | 2t+7=5t-11 | | q-12.42=9 | | (4x+3)(4x+3)=196 | | 0.5d-3d=-5 | | 194c=17= | | 8x^2+11x-51=0 | | 2^x=17/4 | | X+3=(2-x)^2 | | m²-5=20 | | 2x-35/4=1/4 | | 5x^2+4x-135=0 | | -5x-2=4x | | 4/9y=1/18-7/18 | | 6(2x+3)=4(2x+1)+15 | | 2x-7=-13-3x | | 2/3x=1/2x+1 | | (3x/5)+(x/4)+6=x | | 3/2x=1/2x+1 | | (3x/5)+x/4+6=x | | 0,5x(3x-4)+1,5x(0,8-x)=0,32 | | 60/(3x+2)=12 | | 10-2(x+3)=x+19 | | 12=(3.14)r | | 6x^2-8x+2x(2-3x)=-4 | | 6x+18=2x-4 | | 5x+4=4x+2x | | 4y÷9-3=6 | | 60/3(3x+2)=12 | | 57-(25+2x)=16 | | 67x-8=6763x-432 | | 67x-8=6763x432 |

Equations solver categories